
Group Report
Eversity - College Event Website

COP4710-22Spring
Matthew Singh & Exdol Davy

Table of Contents

➢ Project Description

○ Page: 1

➢ GUI

○ Page: 2 - 3

➢ SQL Examples

○ Page 4 - 7

➢ ER-Model

○ Page: 8

➢ Relational Data Model

○ Page: 9

➢ Constraint Enforcement

○ Page: 10 - 11

➢ Advanced Features

○ Page: 12

➢ Conclusion/Observation

○ Page: 13

Project Description

The Eversity Web Application is a web-based implementation of a given university’s

postings of events. Students are able to register using their first name, last name, university

affiliated email, and a secure password of their choosing. Afterwards, the student will be able to

login using their registered email and password. Upon creating a university, a super admin can

provide the university’s email domain. This way, there are no complications with non-existent

university affiliated names.

When logged in, users are sent to the dashboard page, where they can see recent events,

upcoming events, and super admins are able to see pending events in addition to the other

displays. Our web application has a useful navigation bar at the top of the user’s screen that gives

them the option to view the dashboard page, event listing page, RSO listing page, and the option

to logout if they so choose.

1

GUI & Platform

The platform that our web-application primarily runs on is any functional html, css, and
javascript supportive desktop web browser. However, we’ve utilized bootstrap and other
dynamic css and html syntax to create functionality and usability even on mobile web browsers
and/or web browsers viewed on unconventional screen dimensions.

Languages & DBMS

The languages used for the project were html, css, and javascript. In addition to this,
interaction with our database required us to use SQL. Speaking of which, the DBMS used was
PostgreSQL. Node.js, express.js, Visual Studio Code, DataGrip, and an Advanced REST client
were also important tools for local testing of our project.

GUI Screenshots

● Creating a new RSO:

● A student joining an RSO:

● Creating a new Event:

● Creating/Modifying/Deleting a comment:

2

● Viewing an Event:

● Viewing an RSO:

3

SQL Examples

● SQL statement to insert a new RSO (part of the processing of the ‘Create RSO’ form),

show results

INSERT INTO rsos (name, description, university_id, admin_id) VALUES

(name, description, university_id, user_id)

● SQL statement to insert a new student to an existing RSO (part of the processing of the

‘Join RSO’ form), show results

INSERT INTO member_of (user_id, rso_id) VALUES (req.user.user_id, rsoId);

● SQL statement to insert a new event (part of the processing of the ‘Create Event’ form),

show results

INSERT INTO events (name, date, contact_phone, contact_email, rso_id,

location, description, type, creator_id) VALUES (name, date,

4

contactPhone, contactEmail, rsoId ? rsoId : null, '(' + location.lat

+ ', ' + location.lng + ')', description, type, req.user.user_id)

● SQL statement to insert/update a (new) comment (part of the processing of the

‘Create/Delete Comment’ form), show results

INSERT INTO comments (event_id, user_id, text, rating) VALUES

(eventId, user_id, text, rating)

DELETE FROM comments WHERE id = commentId

5

● Several SQL queries to display events—public, private, and RSO-- (part of the

processing of the ‘View Event’ request by a user with a specific role), show results

SELECT * FROM events WHERE type = 0;

SELECT * FROM events WHERE type = 1;

SELECT * FROM events WHERE type = 2;

6

● SQL statements of interest (optional), e.g., advanced SQL queries

SELECT comments.id, comments.text, comments.rating, comments.created_at,users.name,

users.id as user_id FROM comments INNER JOIN users ON comments.user_id = users.id

WHERE comments.event_id = event_id;

7

ER Diagram

During the early stages of the

project, the ERD was constructed to be

the image to the left. However, after

simplifying the requirements, the ERD

in the image below was deemed a

better fit/representation.

8

Relational Data Model

9

Constraint Enforcement

o A new event to be held at the same location and overlapping times with an existing event: Show
error message with enough detail such as the conflicting event, time, location, etc.

o An admin who is not the Admin of the RSO attempts to create an event for that RSO: Show an error
message.

10

o An INSERT of a member of an RSO with 4 members: Show the status of the RSO changing to
‘Active.’ A DELETE of a member of an RSO with 5 members: Show the status of the RSO changing to
‘Inactive.’

11

Advanced Features

JWTs (Javascript Web Tokens)

Password Hashing

Reverse Geocoding (Obtaining location string from pair of coordinates)

Remote SQL Database (Heroku PostgreSQL)

12

Conclusion

In conclusion, the project went 89% in the direction that the “Eversity” team expected.

The database performance was as enhanced as it could be, reducing any unnecessary query

response times. For desired features, passwords were appropriately and irreversibly hashed to be

stored in the database, event feeds from universities were simulated by hand, and social

networking was supported as our web based application allowed users to screenshot events

however they’d like, in addition to the location of their desired events.

Problems that were encountered during the project were but not limited to lack of

sufficient time for perfection and meeting scheduling, repository code push conflicts, and typical

bugs and errors to meet constraint requirements. Things needed to help master this would be

proper week-by-week project planning, funding, and a way to do code reviews among team

members.

One thing that the “Eversity” team appreciated during this project was the ability to

compromise. For example, having done the ERD before the correct ERD was released, the team

members were sure that the artificial ERD was optimal, but according to the course, it was not.

The team was able to quickly rethink how the project would be conducted and carried on. It's

because of this lack of dwelling why testing and debugging was as fluid as it was. Compromising

is definitely in the job description of the Software Development Engineering title.

13

